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SMALL CANCELLATION THEORY 
WITH A WEAKENED SMALL 

CANCELLATION HYPOTHESIS. 
II. THE WORD PROBLEM 

BY 
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The Weizmmm Institute of Science, Rehovot, Israel 

ABSTRACR 
In [1] we introduced the small concellation condition W(4) and developed the 
basic theory for groups having a W(4) presentation. In this paper we solve the 
word problem for groups with a finite W(4) presentation. 

Introduction 

In [1] we introduced the geometrical small cancellation condition W(4) and 
developed the basic theory. In this work we solve the word problem for groups 

having a finite presentation satisfying the condition W(4). In fact, we prove the 
following Area Theorem: 

THEOREM A. Let M be a simply connected map which contains more than one 
region and has connected interior. Denote by [3(M) the number of boundary 
regions of M which contain an edge on the boundary of M and let V(M) be the 
number o[ regions of M. If M satisfies W(4) then V(M) <= ~](M) z. 

The solution of the word problem follows easily from the Area Theorem (see 

[2, p. 262l). 
The proof of the Theorem is by induction on V(M). We show that we can 

always delete a part of the boundary layer of M (see the definition below) such 

that the remaining map M' is simply connected with connected interior and 
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/3(M')_ <-//(M) (Theorem 1). Now the theorem follows by an easy calculation 

(Remark 1). The main step of the proof is the construction of a set of boundary 

chains which diminish the lengtli /3(M) of the boundary. These are given in 

Definition 3. 

For notation and unexplained terms see [1] and [2]. 

Prool~ o! the Area Theorem 

We shall prove the Area Theorem by induction on V(M). The induction step 

is based on the following easy remark. 

REMARK 1. Let M be a connected and simply connected map. Assume that 

M has a submap S with s regions such that if M' is the submap obtained by 

deleting S from M then 

(a) M' is connected and simply connected; 

(b) [3(M')<-_[3(M)- l; 
(c) s =/3(M). 

Suppose V(M') <= [3(M') 2. Then V(M) <= [3(M) z. 
Indeed, 

V(M)<= V(M')+ ~(M) 
<-_ [3(M') 2 + 18(M) 
--- ( /3(M)-  1)2+ fl(M) 
-</3(M) 2. 

In the rest of the paper we show that we can always find a submap S as in the 

Remark. We describe these submaps in Definition 3. But first we need two 

further notions defined below. (See Definitions 1 and 2.) 

DEFINITION 1 (Boundary strips and special strips). 
(a) (See [1, Def. 5.6(c)].) Let M be a connected and simply connected map. 

Let S be a connected submap of M consisting of regions D~ . . . . .  D, and let M' 

be the map obtained from M by deleting all the regions of S. 

S is called a boundary strip in M if the following hold: 

(i) M' is connected (hence nonempy); 

(ii) S is either simply connected or annular; 

(iii) aDi tq 0M is connected and contains an edge j = 1 , . . . ,  r; 

(iv) aD, N aM' ~ ~ ,  j = 1 . . . . .  r; 

(v) c~Dj fq Dj+, contains an edge, j = 1 . . . . .  r - 1. 
(b) Let M be a connected and simply connected map and let S be a boundary 

strip of M. For D ~ S, let Mo be the map obtained by deleting D from M. S is a 
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special strip if the following holds: If D ' E E  is adjacent to D then D ' E  

Cor(Mo). (See [1, Def. 5.6].) See Fig. 1. 

DEFINITION 2 (Boundary chains). Let M be a simply connected map with a 

connected interior and let C be a submap of M. Let M'  be the submap of M 

obtained by removing C from M. C is a boundary chain o[ M if the following 

hold: 

(1) There are special strips C~ . . . . .  C, in M such that C = U'~=~ C, We call C 

the components of C. 

(2) If 0C~ n oCj is not empty then 0C~ O 0Cj consists of a single (boundary) 

vertex except for the case when C is annular and t = 2. In this case 0C~ n c9C2 
consists of two vertices. See Fig. 2(b). 

(3) OCj n oCj+~ ~ O for j = 1 . . . .  , t - 1. (See Fig. 2.) 

Fig. 1. 

(a) 

(b) 

Fig. 2. 
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A boundary chain C is maximal in M if no boundary chain of M contains C 

properly. 

DEFXNmON 3 (Reducing chains). Let M be a simply connected map with a 

connected interior and let S be a submap of M. 

(a) S is a reducing chain of the .first kind if S consists of a single region D, 
D E Cort(M) and at least one of the endpoints of OD tq 3M has valency 3 in M 

(see Fig. 3(a)). For the definition of Cor~(M) see [1, p. 85]. 

(b) S is a reducing chain of the second kind if S consists of a single region D, 

D E Cor2(M) such that both endpoints of 3D n aM have valency 3 in M. (See 

Fig. 3(b).) 
(c) S is a reducing chain o[ the third kind if S consists of two regions DI and 

DE in Cor2(M) such that the endpoints of ODIN 3D2 have valency 3 in M. (See 

Fig. 3(c).) 
(d) S is a reducing chain of the fourth kind if S consists of two regions D~ and 

D2, D~ E Cor2(M) and D2 G Cor3(M) such that the endpoints of OD2 n OM and 

ODE N OD~ have valency 3 in M. (See Fig. 3(d).) 

(e) S is a reducing chain of the fifth kind if S consists of two regions D~ and 
D2, D ,  D2 ~ Cor3(M) such that OD~ f) OD2 contains an edge and the endpoints 
of 3D~ n OM, i = 1,2 and of 0D~ t) ODE have valency 3 in M. (See Fig. 3(e).) 

(f) S is a reducing chain of the sixth kind if S is a boundary strip consisting of 

three regions Dr, D2 and D3 such that D ,  D3 E Cor2(M), iM(D2)= 4 and there 
are regions E~ and E2 of M such that E~ is a common neighbour of D~ and D2 

and Ez is a common neighbour of D2 and D3. (See Fig. 3(f).) 
(g) S is an exceptional reducing chain if the following hold: 

(i) S is a simply connected boundary chain with components C~ . . . . .  C,, 

r_>2. 
(ii) Every component C consists of a single region D~. 
(iii) The components of S can be labelled in such a way that for i =  

1 . . . . .  r -  1 D~ and D,+~ have a common neighbour in M and Dj E 

Cor2(M) for j = 2 . . . . .  r - 1, while DI, Dr E Cor2(M) t_J Cort(M). 

(iv) If Dj E Cor2(M) for j = 1 or j = r (or both) then the endpoint of 

OS n 0M which is contained in 0Dj has valency 3 in M. (See Fig. 3(g).) 

REMAaK 2. Let M be a simply connected map with a connected interior and 

let S be a reducing chain of M. Let M' be the submap of M obtained by deleting 

S from M. The 13(M')<13(M). 

In view of Remarks 1 and 2, Theorem A will follow from the following 

theorem. 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 3. 

THEOREM 1. Let M be a simply connected map with a connected interior. 

Assume that M satisJies the condition W(4). If M contains more that one region 

and M has no boundary regions with one neighbour, then M has a reducing chain. 

The way we shall prove the theorem is to deduce a contradiction from the 

existence of a minimal counterexample, through Lemmas 1-4. To this end we 

introduce the following hypotheses. 

~ :  M satisfies the conditions of Theorem 1. 

K2: (a) Every proper simply connected submap of M with more than one 

region and with a connected interior has a reducing boundary chain; 

(b) M doesn't have a reducing boundary chain. 
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Fig. 4. 

Y (h) 

LEMMA 1. Let M be a simply connected map with a connected interior. Let C 

be a maximal boundary chain of M and let M' be the submap of M obtained by 

deleting C from M. Let M" be a connected component of M'. Let E E Cor (M"). 

Assume ~l and ~,_. Then one of the following holds (see Fig. 4). 

(a) OE n oC = 0 (Fig. 4(a)). 

(b) 0E n OM" c_ OC (Fig. 4(b)). 

PROOF. Assume that both (a) and (b) fail to hold. Then OE n OM contains an 

edge and C is not annular. Let us consider OE O OC. Since E E Cor (M') ,  either 

OE n oC is connected or the path ~- describing OE O OM" has a decomposition 

r = ~',r2~'.~ such that OE n oC = m-, o m-3 (see Fig. 5(a)). Assume that OE n OC 

'r2 

(a) 

o'. 

(¢) 

(h) 

Fig. 5. 

I 
(d) 
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does not contain an edge. Then OE O aC consists of one or two single vertices. 

Assume first that dE O 0C consists of a single vertex v (see Fig. 5(b)). Since 

E E Cor (M"), we may adjunct E to C and get a boundary chain C~ = C U {E} 

which properly contains C, contradicting the maximality of C. Similarly for two 

vertices. So let /z describe a component of dE O OC. Let D'  and D" be the 
extremal regions of C. Then at least one of them, say D', contains a head (tail)/x. 

of/.~ on its boundary (see Fig. 5(c)). We claim that/x =/xo. For if not then {D'} is 

a reducing chain of the second kind if aD' O dD contains an edge for some D in 

C (see Fig. 5(c)) and {D'} is a reducing chain of the first kind, if aD'O aD 

consists of a single vertex, for some D in C (See Fig. 5(d).) 
However, this violates Xt or ~ ,  in both cases. Thus aE O aD' is a component 

of dE n 0C. Similarly, if dE n dD" ~ O then dE n 0D" is a component of 

aE O 0C But then C U {E} is a boundary chain of M which properly contains C, 

contradicting the maximality of C in M. Consequently, a E N  0C = 0 ,  con- 

tradicting that both (a) and (b) fail to hold. 

LEMMA 2. Let M be a simply connected map with a connected interior and 

assume that C is a maximal boundary chain of M. Let M' be the submap of M 

obtained by deleting C [rom M and let S be a reducing chain of M'. If ~(~ and ~2 

hold then 

(a) S is not of the sixth kind and 

(b) aS n aM'C_ aC. 

PROOF. Note that by Definition 3 every region of a reducing chain belongs to 

Cor (M'), except for the case when S is of the sixth kind. Hence (a) implies (b) by 
Lemma 1. So we prove (a). Assume S if of the sixth kind and let S = {D~, D2, D3} 

as defined by Definition 3(f). (See Fig. 3(f).) Let IX = 0S n aM'. Since 

D~, D3 ~ Cor2(M), we have three cases to consider, due to Lemma 1. 

Case 1. IX C_ aD2 (see Fig. 6(a)). 
Case 2. I~ n a D ,  C_ iz (see Fig. 6(b)). 

Case 3. 0D3 n aM c ix (see Fig. 6(c)). 

Case 1: Since /z n aD~ = ~ for i =  1,3, /~ cannot have an endpoint with 

valency greater than 3 because then M would have a reducing chain of the 

second kind, containing this vertex. So we may assume that the endpoints of/~ 

have valency 3. But then it easily follows that C contains a reducing chain of at 

least one of the kinds 1, 3, 4 described in Definition 3. This contradicts ~ or ~2. 

Case 2: Since Dt has an inner vertex with valency 3 in M, the W(4) 

condition implies that iM(DI)--> 5. But since iM,(DI)= 2, D~ has at least three 
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(a) 

b) 

(c) 

Fig. 6. 

U/~z 

neighbours in C, hence at least 2 vertices on/.t which are not endpoints of/.t. If 

iM(Dt)--5 then these vertices have valency at least 4, hence M has a reducing 

chain of the second kind. Thus we may assume that these vertices have valency 3 

and consequently iM(DL) _--> 6, by the W(4) condition. But then C contains a 

reducing subchain of the fifth kind, again contradicting 5~, or 32. 

Case 3: Similar to Case 2. 

LEMMA 3. Let M be a simply connected map with a connected interior. Let C 

be a boundary chain of M and let M' be the submap obtained by deleting C from 

M. Let E E Cor (M') and assume that OE O tgM' C_ OC. Suppose that 

(*) OE n OM' has an endpoint with valency 3 in M' if E UCor.,(M') and 

(**) dE n aM' has both endpoints with valency 3 in M', if EECor3(M'). 
Then one of the following holds. 

(a) M has a reducing chain; or 

(b) M has a boundary region with one neighbour; or 



(c) dM(E) = 4, E E Cor2(M') and there are extremal regions D' and D" of C i[ 

C consists of a unique component and consecutive components o[ C which 

contain the endpoints u and v of 015 n OC respectively, if C contains more 

than one component, and 

(i) dE n dC = (dE n dD') U (dE n dD"); 
(ii) either dD' n dM' = dD' N dE in which case d•,(u) = 3 (see Fig. 7) or 

dD" n OM = dD" n OE in which case dM,(v)= 3. 

PROOF. 

cases: 

Case 1: 

Case 2: 

Fig. 7. 

Let u and v be the endpoints of OE n OM'. We distinguish three 

u and v belong to the same component C~ of C. (See Fig. 8(a).) 

u and v belong to different components C~ and C, of C respec- 

tively, such that OC n oC, = 0 .  (See Fig. 8(b).) 
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(a) (b) 

(c) 

Fig. 8. 
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Case 3: u and v belong to different components C~ and Cj of C respec- 

tively, such that OC~ n oCj = {w} for a vertex w with valency 4 (i.e., C~ and Cj are 

consecutive components of C). (See Fig. 8(c).) 

Case 1: Let tx = OE O OCt. It follows from the W(4) condition that Ix has 

inner vertices, i.e., vertices other than u and v. Let w be such a vertex. Then we 

may assume that w has valency 3. For assume w has valency at least 4. If C~ is 

simply connected then X has a region D with i (D)  = 2 such that w ~ OD and the 

endpoints of 0D O 0M have valency 3, so M has a reducing boundary chain of 

the second kind. (See Fig. 9(a).) If C~ is annular and no such region D exists, 

then the two regions, say Do and D,, which contain w on their boundary, 

constitute an exceptional reducing boundary chain (see Fig. 9(b)). So assume that 

all the inner vertices w of Ix have valency 3 in M. If Ix has ! inner vertices and 

E ~ Cork (M'), k = 1, 2, 3, then ! _-> 1. Due to the property C N(1) (see [1,2]) and 

the condition W(4) we have 

(1) dM(E) = k + 1 + I. 

Let us consider the cases k = 1, k = 2 and k = 3 separately. For the cases 

k = 1,2 we shall show l _-> 3. Then C will contain a reducing chain of the fifth 

kind (see Fig. 9(c)). To this end, by (1) it is enough to show 

(2) dM(E) > k +4.  

(a) 

(b) 

(c) 

Fig. 9. 
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If k = 1 then 3E has at most 2 vertices with valency 4, hence the condition 

W(4) forces dM(E)=> 7 and (2) holds. 
If k = 2 then 3E has at most 3 vertices with valency 4, hence the condition 

W(4) forces dM(E)=>6 and again (2) holds. 

If k = 3 then we distinguish two subcases. 
Subcase 1: One of u or v has valency 3 in M (see Fig. 10(a)). Then OE has 

at most 2 vertices with valency 4, hence by the W(4) condition we have 

dM(E) _-> 7. Thus (2) holds, ! _-> 3 and again M has a reducing chain of the fifth 

kind. 
Subcase 2: Both u and v have valency 4 in M (see Fig. 10 (b), (c)). Since 3E 

has at most 3 vertices with valency 4, dM(E)_->6, hence 1-_>2. Therefore M 

contains a reducing chain of the fourth or fifth kind. (See Fig. 10(b) and (c).) 

(a) 
(b) 

(c) 

Fig. 10. 

Case 2. We may assume that u and v are not on the boundary of the same 

component of C, in view of Case 1. Assume j - i > 1 and let Ck be a component 

of C with i < k < j. If C~ consists of a single region then (b) holds. (See Fig. 

1 l(a).) So assume C~ contains at least 2 regions. If C~ contains 2 regions then Ck 

constitutes a reducing chain of M of the third kind, hence (a) holds. (See Fig. 

1 l(b).) Finally, if C~ contains at least three regions, then Ck has a head consisting 

of two regions which constitute a reducing chain of M of the fourth kind (see Fig. 

ll(c)) or of the second kind (see Fig. ll(d)). 
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(a) (~) 

(c) 

(d) 

Fig. 11. 

(a) 

(b) 

, a  

(c) (d) 

Fig. 12. 

Case 3: Let D~ and Dj be the extremal regions of C, and C/ respectively 

which contain w. We claim that 

either u E D~ or v E D r (see Fig. 12(a)). 

For if not then {D~, Dj} constitutes an exceptional reducing chain of the second 

kind (see Fig. 12(b)). 

Assume u E D~. Le t /z  = aE O aC and assume that tt contains l vertices of M 

other than u, v and w. If one of them has valency at least 4 in M then C contains 
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a reducing chain of the second kind. See Fig. 12(c). So let us assume that all of 

them have valency 3 in M. If l _-> 2, M contains a reducing chain of the fourth 

kind. See Fig. 12(d). 

Let l = 1. See Fig. 14. If dDi O dM' _ dE then M contains an exceptional 

reducing chain. Let F be the neighbour of Dj in G- If dF O aM' C_ dE then M 

contains a reducing chain of the third or fourth kind. So assume that 

3Di n dM' ¢2 dE and OF n 3M' ¢£ E. (See Fig. 12(a).) If E E Cor2(M') then by 

(*) at least one of the vertices u, v has valency 3 in M and if E ~ Cord(M') then 

by (**) both u and v have valency 3 in M. But both possibilities contradict W(4). 

Let ! = 0. If 3D~ O OM' C_ aE and 3Dj O aM' _C dE then M has a reducing 

chain of the first kind or the second kind or is of exceptional kind. (See Fig. 

13(a).) 

If OD~ n aM' ~, OE and 3D~ N tgM' ~Z dE, we get a contradiction to W(4), in 

view of (*) and (**). 

Let 3/), O 3M' _C dE and let dDj n 3M' ~ E. If u has valency _-> 4 in M' then 

by (*) v has valency 3 in M' and we get a contradiction to W(4). 

Therefore u has valency 3 in M', so we obtain the situation in part (c) of the 

lemma. 

Similarly, if dD~ n OM'C_ dE, 3D~ N OM'C_ dE, we obtain part (c) of the 

lemma. See Fig. 13(b). 

The lemma is proved. 

W W 

(a) (b) 

Fig. 13. 

(a) (b) 

Fig. 14. 
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LEMMA 4. Let M be a simply connected map with a connected interior which 

contains more than one region. I f  M satisfies the condition W(4) and Y~I and ~2 

hold then M has a boundary region E with iM(E)= 1. 

PROOF. It follows from [1, Theorem A] that M has a maximal boundary 

chain C. Let M' be the submap obtained by deleting C from M. By ~2(a) either 

M' consists of a simple region or M' has a reducing chain S. In this case by 

Lemma 2, OS tq aM' C_ 0C. Assume first that M' contains more than one region 

and M has no region with iM(D)= 1. We claim that S is a simply connected 

exceptional reducing chain. First, by Definition 3 every extremal region of S 
either satisfies (*) or satisfies (**) of Lemma 3, hence by Lemma 3 satisfies part 

(c) of Lemma 3. This immediately rules out reducing chains of the first, fourth, 

fifth, and exceptional chains with r = 2. Also, S is not of the sixth kind, by 
Lemma 2. On the other hand, the arguments given in Lemma 3 easily show that 
if S would be of the second kind then it would produce an exceptional reducing 

chain, if S would be of the third kind then it would produce a reducing chain of 

the third kind and if S would be exceptional then it would produce a reducing 

chain of the third kind of M. This however violates hypotheses Y/'1 or ~2. Thus S 

necessarily is exceptional with r _-> 3. If S is annular then the two extremal 

regions of S form a reducing chain of the third kind, again violating ~1 or Y/'2. 

Hence S is a simply connected exceptional reducing chain. 
Let E be the minimal connected submap of C such that 0~ _~ OC fq OS. (See 

Fig. 15.) 
We claim that E contains an exceptional reducing chain. Indeed, let x and y 

be the endpoints of aS N aC. By Definition 3(g) dM,(x) = dM,(y) = 3, while by 
Lemma 3(c) riM(x) = dM(y) = 4. Consequently 

(i) aE tq aM' = aS A aM'. 
Furthermore 

(ii) every component of the interior of X consists of a single region and 

(iii) every region of S has a nontrivial common boundary with exactly two 

regions (hence components) of E. 

X 

Fig. 15. 
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(a) 

Fig. 16. 

(b) 

To see (ii) and (iii) we show first that if D is a non-extremal region of S then 

the endpoints u and v of OD fq OX cannot belong to the same component of the 

interior of E. (See Fig. 16.) 

Assume not and let /~ = 0D N 0E. (See Fig. 16(a).) By ~/'1 and X2, we may 
assume that all the vertices of p., except u and v, have valency 3. Consequently, 

by the W(4) condition/z has at least 3 vertices, u and v excluded. But then E 

contains a reducing chain of the fifth kind, contradiction. Thus u and v must be 

on different components of the interior of X. (See Fig. 16(b).) 

Assume now that (ii) is false. First we claim that every component of the 

interior of X which contains more than one region, in fact contains exactly two 

regions. It is clear that either u or v must belong to an extremal region of some 

component of the interior of E, for otherwise X contains an exceptional reducing 

chain of the second kind (see Fig. 14(a)). We may assume that u and v belong to 

adjacent components C and C~÷, of the interior of X. (The arguments of the 
proof of Case 2 in the proof of Lemma 3 apply here.) Let Di and Di+~ be the 
extremal regions of C~ and C~+~ respectively such that OD, N OD~+~ # 0 and 
assume that u ~ OD~. If v~_OD~÷~ and F is the neighbour of D~÷~ then v 

necessarily belongs to F (see Fig. 14(b)) for otherwise the submap containing 
Di÷~ and F constitutes a reducing chain of the fourth kind. Since the two 

endpoints of the common edge of a region of S with aX cannot be on the same 

component of E, this implies that every component Cj of S contains at most 
three regions for otherwise we would have a reducing chain of the fifth kind. But 

if Cj contains 3 regions then Cj constitutes a reducing chain of the sixth kind. 

Thus every component of the interior of E contains at most two regions. 

Let us label the components of E as follows: 

Let v = OS N 0E. Then the component which contains 0(/~) and is to the right 

of t(/z) has subscript 1, the component following it has subscript 2, and so on. 

Let now C,, . . . . .  C~, be all the components of the interior of E which contain 

two regions. Assume that the components are labelled in such a way that if it < ik 
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el! 

(a) 
(b) 

(c) (d) 

Fig. 17. 

then C,j is to the left of C~k. Denote by Ej and F~ the regions of C,j, such that Ej is 

to the left of Fj (see Fig. 17(a)). 

Let us consider C~,. It consists of El and/=1. It follows easily from the W(4) 

condition and the assumptions X1 and Y(2 that C,, has exactly 2 neighbours in S. 

Consequently either E~ or F~ has exactly one neighbour in S. In the first case the 

subchain of E beginning with (71 and ending with E~ is an exceptional reducing 

chain. (See Fig. 17(b).) In the second case let k be the highest index such that Fk 

has exactly one neighbour in S. If k = t then the tail subchain of X beginning 

with FI is an exceptional reducing chain. (See Fig. 17(c).) On the other hand, if 
k < t then the subchain of X beginning with Fk and ending with Ek+~ is again an 

exceptional reducing chain. (See Fig. 17 (d).) This contradiction proves that (ii) 
holds. Due to (ii), if (iii) is false then X has a region D with iM(D)= 1, 
contradicting our assumption. Thus (iii) holds. But then E is an exceptional 

reducing chain, violating ~t  or ~2. Consequently M' contains at most one 
region. However in this case the lemma is immediate. This completes the proof 
of Lemma 4. 

PROOF OF THEOREM 1. If M has only one region the statement is vacuous. So 

assume M has more than one region and prove the theorem by induction on 

V(M). Thus assume 2Kt and ~2. Then by Lemma 4 either M has a reducing 

chain, in which case ~2 is violated, or M has a region E with iu(E) = 1, in which 

case ~ is violated. This completes the proof of the theorem. 

Now let us eliminate the case when a boundary region E with iu(E) = I exists. 
This we shall do through the next Lemma. 

LEMMA 5. Let M be a simply connected map with a connected interior. 
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Assume that M satisfies the condition W(4). Let M' be the submap of M obtained 
by deleting all the regions E with iu(E) = 1 from M. If ~2 holds then 

(a) M' is connected and 
(b) M' has no boundary regions F with iM.(F)= 1. 

PROOF. Follows easily from the fact that, all the regions F deleted from M 

satisfy iM(F) = 1. 
(b) Let F be a boundary region of M' with iM,(F) = 1. If iM(F) = k then F has 

k - 1 neighbours E~ with iM (Ej) = 1 which are not in M'. If OEj O OM has an 

endpoint with valency 3 then {Ej} is a reducing chain of the first kind, 

contradicting X~. Thus the endpoints of 0Ej n 0M have valency at least 4, for all 

j = 1 . . . . .  k - 1. On the other hand, since every Ej has exactly one neighbour in 

M, namely F, and F has only one neighbour in M', no common vertex of 0Ej and 

0Ej+1 may have valency greater than 4. (See Fig. 18.) 

Therefore, if k - 1 _-> 2 then {E,, E2} constitutes an exceptional reducing chain 

of the first kind, violating X2. Thus k - 1 -<_ 1, i.e., k _-< 2 and iM(F) _--< 2. By the 

W(4) condition this implies that OF n 0M contains an edge. But then 0El O 0M 

has an endpoint with valency 3, contradicting ~/'2 again. Consequently M' has no 

boundary region F with iM,(F) = 1, as required. This completes the proof of the 

Lemma. 

PROOF OF THEOREM A. If M has only one region, we are done. So assume M 

has more than one region. If M has a reducing chain then the theorem follows by 

Remark 1. So assume X,(b). Then by Lemma 4 we may assume that M has a 

region D with iM(D) = 1. Let M' be the map obtained by deleting all the regions 

D of M with i•(D)--1. Then M' is connected by Lemma 5 and M ' ~  M. 

Consequently, by Lemma 3 and Lemma 4, if M' contains more than one region, 

which we certainly may assume, then M' has a reducing chain S. We claim that if 

0S O 0 D ~ O  for some D with iM(D)= 1 then OD O OS contains only one 

vertex. Indeed, if 0D O 0E contains an edge for a (hence a unique) region E of S 

then dM(E) = dM,(E) + 1 _-_ 5 by Definition 3 and equality holds only if S is of the 

sixth kind in which case E has two vertices at least with valency 3, which 

Fig. 18. 
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Fig. 19. 

contradicts W(4). If OE tq OM does not contain an edge then this violates W(4). 
Also if dM(E)= 4 then E has a vertex with valency 3 by Definition 3, again 
violating the condition W(4). Consequently OD f30E cannot contain an edge, 
unless 0E has an edge on 0M. But in this case OD has a vertex with valency 3, 
contradicting ~ .  Thus S is a boundary chain of M, but not necessarily a 

reducing chain, because the valency of the two extremal points may increase. See 
Fig. 19. Let M" be the map obtained by deleting S from M'. Then 

(*) M" is obtained from M by deleting at most 
/3(M) boundary regions from M. 

On the other hand, certainly/3 (M') =/3 (M), while/3 (M') </3 (M') by Theorem 
1. Thus 

(**) /3(M")< /3(M). 

Now (*) and (**) imply the theorem by Remark 1. 
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