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ARYE JUHASZ'

The Weizmann Institute of Science. Rehovot, Israel

ABSTRACR
In [1] we introduced the small concellation condition W(4) and developed the
basic theory for groups having a W(4) presentation. In this paper we solve the
word problem for groups with a finite W(4) presentation.

Introduction

In [1] we introduced the geometrical small cancellation condition W(4) and
developed the basic theory. In this work we solve the word problem for groups
having a finite presentation satisfying the condition W(4). In fact, we prove the
following Area Theorem:

THEOREM A. Let M be a simply connected map which contains more than one
region and has connected interior. Denote by B(M) the number of boundary
regions of M which contain an edge on the boundary of M and let V(M) be the
number of regions of M. If M satisfies W(4) then V(M) = (MY

The solution of the word problem follows easily from the Area Theorem (see
[2, p. 262)).

The proof of the Theorem is by induction on V(M). We show that we can
always delete a part of the boundary layer of M (see the definition below) such
that the remaining map M’ is simply connected with connected interior and
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B(M')= B(M) (Theorem 1). Now the theorem follows by an easy calculation
(Remark 1). The main step of the proof is the construction of a set of boundary
chains which diminish the length B(M) of the boundary. These are given in
Definition 3.

For notation and unexplained terms see [1] and [2].

Proof of the Area Theorem

We shall prove the Area Theorem by induction on V(M). The induction step
is based on the following easy remark.

REMARK 1. Let M be a connected and simply connected map. Assume that
M has a submap S with s regions such that if M’ is the submap obtained by
deleting S from M then

(a) M’ is connected and simply connected;

(b) BIM")=B(M)—1;

(c) s=B(M).
Suppose V(M')=B(M'). Then V(M) = B(MY.
Indeed,
VIM)= V(M)+ B(M)
=B(M'Y + B(M)
=(BM)— 1Y+ B(M)
=B(M).

In the rest of the paper we show that we can always find a submap S as in the
Remark. We describe these submaps in Definition 3. But first we need two
further notions defined below. (See Definitions 1 and 2.)

DeriNITION 1 (Boundary strips and special strips).

(a) (See [1, Def. 5.6(c)].) Let M be a connected and simply connected map.
Let S be a connected submap of M consisting of regions D,,..., D, and let M’
be the map obtained from M by deleting all the regions of S.

S is called a boundary strip in M if the following hold:

(i) M’ is connected (hence nonempy);

(ii) S is either simply connected or annular;

(iii) #D; N oM is connected and contains an edge j=1,...,r;

(iv) aD;NM' #D, j=1,...,r;

(v) 8D; N D, contains an edge, j=1,...,r—1.

(b) Let M be a connected and simply connected map and let S be a boundary
strip of M. For D € S, let Mp, be the map obtained by deleting D from M. S is a



Vol. 58, 1987 SMALL CANCELLATION THEORY 21

special strip if the following holds: If D'€ E is adjacent to D then D'€E
Cor (Mp). (See [1, Def. 5.6].) See Fig. 1.

DEerINITION 2 (Boundary chains). Let M be a simply connected map with a
connected interior and let C be a submap of M. Let M’ be the submap of M
obtained by removing C from M. C is a boundary chain of M if the following
hold:

(1) There are special strips C,, ..., C, in M such that C = U_, C. We call C,
the components of C.

(2) If 3G N 3G is not empty then dC; N dC; consists of a single (boundary)
vertex except for the case when C is annular and ¢t = 2. In this case 4C, N 4C;
consists of two vertices. See Fig. 2(b).

(3) aIGNaC,, #D for j=1,...,t—1. (See Fig. 2.)

Di Dr

Fig. 1.

(b
Fig. 2.
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A boundary chain C is maximal in M if no boundary chain of M contains C
properly.

DerinTiON 3 (Reducing chains). Let M be a simply connected map with a
connected interior and let S be a submap of M.

(a) S is a reducing chain of the first kind if S consists of a single region D,
D € Cor (M) and at least one of the endpoints of dD N dM has valency 3 in M
(see Fig. 3(a)). For the definition of Cor,(M) see [1, p. 85].

(b) S is a reducing chain of the second kind if S consists of a single region D,
D € Cory(M) such that both endpoints of 4D N dM have valency 3 in M. (See
Fig. 3(b).)

(c) S is a reducing chain of the third kind if S consists of two regions D, and
D, in Cory(M) such that the endpoints of D, N dD, have valency 3 in M. (See
Fig. 3(c).)

(d) S is a reducing chain of the fourth kind if S consists of two regions D, and
D,, D, €Cory(M) and D, € Cor;(M) such that the endpoints of 4D, N dM and
dD, N aD, have valency 3 in M. (See Fig. 3(d).)

(e) S is a reducing chain of the fifth kind if S consists of two regions D, and
D,, D,, D, € Cor;(M) such that 4D, N 3D, contains an edge and the endpoints
of 8D, N M, i =1,2 and of dD, N 3D, have valency 3 in M. (See Fig. 3(e).)

(f) S is a reducing chain of the sixth kind if S is a boundary strip consisting of
three regions D\, D, and D, such that D,, D, € Cor,(M), in(D:) =4 and there
are regions E, and E; of M such that E, is a common neighbour of D, and D,
and E, is a common neighbour of D, and D;. (See Fig. 3(f).)

(g) S is an exceptional reducing chain if the following hold:

(i) S is a simply connected boundary chain with components C,,...,C,
r=2,

(ii) Every component C, consists of a single region D;.

(iii) The components of S can be labelled in such a way that for i =
1,...,r—1 D; and D, have a common neighbour in M and D, €
Cory(M) for j=2,...,r—1, while D,, D, € Cory(M)U Cor(M).

(iv) If D, €Cory(M) for j=1 or j=r (or both) then the endpoint of
4S8 N aM which is contained in 8D, has valency 3 in M. (See Fig. 3(g).)

RemARK 2. Let M be a simply connected map with a connected interior and

let S be a reducing chain of M. Let M’ be the submap of M obtained by deleting
S from M. The B(M')< B(M).

In view of Remarks 1 and 2, Theorem A will follow from the following
theorem.
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THEOREM 1. Let M be a simply connected map with a connected interior.
Assume that M satisfies the condition W(4). If M contains more that one region
and M has no boundary regions with one neighbour, then M has a reducing chain.

The way we shall prove the theorem is to deduce a contradiction from the
existence of a minimal counterexample, through Lemmas 1-4. To this end we
introduce the following hypotheses.

K. M satisfies the conditions of Theorem 1.

H>: (a) Every proper simply connected submap of M with more than one
region and with a connected interior has a reducing boundary chain;

(b) M doesn’t have a reducing boundary chain.
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(a) “
Fig. 4.

(b)

LEMMA 1. Let M be a simply connected map with a connected interior. Let C

be a maximal boundary chain of M and let M' be the submap of M obtained by
deleting C from M. Let M" be a connected component of M'. Let E € Cor (M").
Assume ¥, and ¥,. Then one of the following holds (see Fig. 4).

(@) dE N aC = (Fig. 4(a)).

(b) 0E N aM" C 3C (Fig. 4(b)).

PrOOF. Assume that both (a) and (b) fail to hold. Then dE N dM contains an
edge and C is not annular. Let us consider dE N 3C. Since E & Cor (M"), either
dE N aC is connected or the path 7 describing dE N dIM" has a decomposition
T = 1,727 such that dE N 3aC = 7,U 1, (see Fig. 5(a)). Assume that dE N 3C

T2

(@) )

©
Fig. 5. @
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does not contain an edge. Then dE N 4C consists of one or two single vertices.
Assume first that 9E N dC consists of a single vertex v (see Fig. 5(b)). Since
E € Cor (M"), we may adjunct E to C and get a boundary chain C, = CU{E}
which properly contains C, contradicting the maximality of C. Similarly for two
vertices. So let u describe a component of JE N dC. Let D' and D" be the
extremal regions of C. Then at least one of them, say D', contains a head (tail) u,
of u on its boundary (see Fig. 5(c)). We claim that g = p,. For if not then {D'} is
a reducing chain of the second kind if dD' N 4D contains an edge for some D in
C (see Fig. 5(c)) and {D'} is a reducing chain of the first kind, if D' N 4D
consists of a single vertex, for some D in C. (See Fig. 5(d).)

However, this violates ¥, or J, in both cases. Thus dE N 9D’ is a component
of 3E N 3C. Similarly, if dE N3D"#(J then 9E N 3D" is a component of
dE N 9C. But then C U{E} is a boundary chain of M which properly contains C,
contradicting the maximality of C in M. Consequently, dE N dC =, con-
tradicting that both (a) and (b) fail to hold.

Lemma 2. Let M be a simply connected map with a connected interior and
assume that C is a maximal boundary chain of M. Let M’ be the submap of M
obtained by deleting C from M and let S be a reducing chain of M'. If ¥, and X,
hold then

(a) S is not of the sixth kind and

(b) SN oM’ C aC.

ProoF. Note that by Definition 3 every region of a reducing chain belongs to
Cor (M), except for the case when § is of the sixth kind. Hence (a) implies (b) by
Lemma 1. So we prove (a). Assume S if of the sixth kind and let § = {D, D,, D}
as defined by Definition 3(f). (See Fig. 3(f).) Let u =4aSNaIM’'. Since
D,, D, € Cor,(M), we have three cases to consider, due to Lemma 1.

Case 1. u C D, (see Fig. 6(a)).

Case 2. uNaD,Cpu (see Fig. 6(b)).

Case 3. 8D,N aM C u (see Fig. 6(c)).

Case 1: Since u N 3D, = for i =1,3, u cannot have an endpoint with
valency greater than 3 because then M would have a reducing chain of the
second kind, containing this vertex. So we may assume that the endpoints of u
have valency 3. But then it easily follows that C contains a reducing chain of at
least one of the kinds 1, 3, 4 described in Definition 3. This contradicts ¥, or J..

Case 2: Since D, has an inner vertex with valency 3 in M, the W(4)
condition implies that iy (D,)=S5. But since iy(D,)=2, D, has at least three
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neighbours in C, hence at least 2 vertices on g which are not endpoints of u. If
in(D)) =5 then these vertices have valency at least 4, hence M has a reducing
chain of the second kind. Thus we may assume that these vertices have valency 3
and consequently iy(D,)=6, by the W(4) condition. But then C contains a
reducing subchain of the fifth kind, again contradicting ¥, or ¥..

Case 3: Similar to Case 2.

LEMMA 3. Let M be a simply connected map with a connected interior. Let C
be a boundary chain of M and let M’ be the submap obtained by deleting C from
M. Let E € Cor(M') and assume that dE N dM’ C dC. Suppose that

(*) OE N oM’ has an endpoint with valency 3 in M’ if E € Cor,(M') and

(**) dE N M’ has both endpoints with valency 3 in M', if E € Cor,(M").
Then one of the following holds.

(a) M has a reducing chain; or

(b) M has a boundary region with one neighbour; or
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(c) du(E)=4, E € Cor,(M') and there are extremal regions D' and D" of C if
C consists of a unique component and consecutive components of C which
contain the endpoints u and v of 9E N 8C respectively, if C contains more
than one component, and

(i) dENAC =(IEN DYV (3E N aD");
(ii) either aD' N M’ = 3D’ N JE in which case dn(u) =3 (see Fig. 7) or
aD" N dM = aD" N 3E in which case dy(v)=73.

PrROOF. Let u and v be the endpoints of dE N dM'. We distinguish three

cases:
Case 1: u and v belong to the same component C of C. (See Fig. 8(a).)
Case 2: u and v belong to different components C, and C of C respec-

tively, such that aC, N dC;, = . (See Fig. 8(b).)

N

Fig. 7.

(a) ()

Fig. 8.
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Case 3: u and v belong to different components C; and C of C respec-
tively, such that dC, N 8C, = {w} for a vertex w with valency 4 (i.e., C and C are
consecutive components of C). (See Fig. 8(c).)

Case 1: Let u =0E N dC. It follows from the W(4) condition that p has
inner vertices, i.e., vertices other than u and v. Let w be such a vertex. Then we
may assume that w has valency 3. For assume w has valency at least 4. If C is
simply connected then 2. has a region D with i(D) =2 such that w € 4D and the
endpoints of dD N M have valency 3, so M has a reducing boundary chain of
the second kind. (See Fig. 9(a).) If G is annular and no such region D exists,
then the two regions, say D, and D, which contain w on their boundary,
constitute an exceptional reducing boundary chain (see Fig. 9(b)). So assume that
all the inner vertices w of u have valency 3 in M. If p has [ inner vertices and
E € Cor, (M"), k =1,2,3, then | = 1. Due to the property C N(1) (see [1,2]) and
the condition W(4) we have

m du(E)=k +1+1.

Let us consider the cases k =1, k =2 and k =3 separately. For the cases
k = 1,2 we shall show | 3. Then C will contain a reducing chain of the fifth
kind (see Fig. 9(c)). To this end, by (1) it is enough to show

2) du(E)=k +4.
@ ZJ
'
(a)
{b)
M

©
Fig. 9.
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If k =1 then 3E has at most 2 vertices with valency 4, hence the condition
W(4) forces dy(E)=7 and (2) holds.

If k =2 then dE has at most 3 vertices with valency 4, hence the condition
W(4) forces dy(E)=6 and again (2) holds.

If k =3 then we distinguish two subcases.

Subcase 1: One of u or v has valency 3 in M (see Fig. 10(a)). Then JE has
at most 2 vertices with valency 4, hence by the W(4) condition we have
duy(E)=7. Thus (2) holds, I =3 and again M has a reducing chain of the fifth
kind.

Subcase 2: Both u and v have valency 4 in M (see Fig. 10 (b), (¢)). Since dE
has at most 3 vertices with valency 4, dy(E)=6, hence [ 2. Therefore M
contains a reducing chain of the fourth or fifth kind. (See Fig. 10(b) and (c).)

Case 2. We may assume that u and v are not on the boundary of the same
component of C, in view of Case 1. Assume j —i >1 and let C, be a component
of C with i <k <j. If C, consists of a single region then (b) holds. (See Fig.
11(a).) So assume C, contains at least 2 regions. If C, contains 2 regions then G,
constitutes a reducing chain of M of the third kind, hence (a) holds. (See Fig.
11(b).) Finally, if G, contains at least three regions, then C, has a head consisting
of two regions which constitute a reducing chain of M of the fourth kind (see Fig.
11(c)) or of the second kind (see Fig. 11(d)).
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b)

Fig. 12

Case 3: Let D; and D; be the extremal regions of C; and G respectively
which contain w. We claim that
either u € D, or v € D; (see Fig. 12(a)).
For if not then {D, D;} constitutes an exceptional reducing chain of the second
kind (see Fig. 12(b)).
Assume u € D;. Let u = dE N JC and assume that u contains ! vertices of M
other than u, v and w. If one of them has valency at least 4 in M then C contains
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a reducing chain of the second kind. See Fig. 12(c). So let us assume that all of
them have valency 3 in M. If | =2, M contains a reducing chain of the fourth
kind. See Fig. 12(d).

Let I =1. See Fig. 14. If 4D, N dM' C 9E then M contains an exceptional
reducing chain. Let F be the neighbour of D; in C. If F N dM’' C dE then M
contains a reducing chain of the third or fourth kind. So assume that
oD, N 8M' Z dE and 9F N oM' Z E. (See Fig. 12(a).) If E € Cor,(M') then by
(*) at least one of the vertices u, v has valency 3 in M and if E € Cor;(M’) then
by (**) both u and v have valency 3 in M. But both possibilities contradict W(4).

Let 1 =0. If aD, N dM’'C dE and 4D; N M’ C dE then M has a reducing
chain of the first kind or the second kind or is of exceptional kind. (See Fig.
13(a).)

If 9D, N oM' Z dE and 9D; N dM' Z JE, we get a contradiction to W(4), in
view of (*) and (**).

Let aD; N dM' C JE and let aD; N oM’ Z E. If u has valency =4 in M’ then
by (*) v has valency 3 in M’ and we get a contradiction to W(4).

Therefore u has valency 3 in M, so we obtain the situation in part (c) of the
lemma.

Similarly, if aD; N oM'Z dE, aD; N dM’' C E, we obtain part (c) of the
lemma. See Fig. 13(b).

The lemma is proved.

&/ T NG

(a) L)

Fig. 14.
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LEMMA 4. Let M be a simply connected map with a connected interior which
contains more than one region. If M satisfies the condition W(4) and X, and ¥,
hold then M has a boundary region E with iy(E)=1.

Proor. It follows from {1, Theorem A] that M has a maximal boundary
chain C. Let M’ be the submap obtained by deleting C from M. By X(a) either
M’ consists of a simple region or M’ has a reducing chain S. In this case by
Lemma 2, S N dM' C 3C. Assume first that M’ contains more than one region
and M has no region with iy (D)= 1. We claim that S is a simply connected
exceptional reducing chain. First, by Definition 3 every extremal region of S
either satisfies (*) or satisfies (##*) of Lemma 3, hence by Lemma 3 satisfies part
(c) of Lemma 3. This immediately rules out reducing chains of the first, fourth,
fifth, and exceptional chains with r =2. Also, S is not of the sixth kind, by
Lemma 2. On the other hand, the arguments given in Lemma 3 easily show that
if S would be of the second kind then it would produce an exceptional reducing
chain, if S would be of the third kind then it would produce a reducing chain of
the third kind and if S would be exceptional then it would produce a reducing
chain of the third kind of M. This however violates hypotheses ¥, or #,. Thus S
necessarily is exceptional with r=3. If S is annular then the two extremal
regions of S form a reducing chain of the third kind, again violating ¥, or X..
Hence S is a simply connected exceptional reducing chain.

Let 3 be the minimal connected submap of C such that 4% 2 dC N 3S. (See
Fig. 15.)

We claim that 2. contains an exceptional reducing chain. Indeed, let x and y
be the endpoints of S N 3C. By Definition 3(g) du(x) = du-(y) =3, while by
Lemma 3(c) du(x)= du(y)=4. Consequently

(i) 93N M’ = 3S N IM'.

Furthermore

(ii) every component of the interior of 2 consists of a single region and

(iii) every region of S has a nontrivial common boundary with exactly two
regions (hence components) of 3.

Fig. 15.
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(a) (b)

Fig. 16.

To see (ii) and (iii) we show first that if D is a non-extremal region of S then
the endpoints u and v of dD N 33 cannot belong to the same component of the
interior of . (See Fig. 16.)

Assume not and let u = 3D N 93. (See Fig. 16(a).) By ¥, and X, we may
assume that all the vertices of u, except u and v, have valency 3. Consequently,
by the W(4) condition u has at least 3 vertices, 4 and v excluded. But then %
contains a reducing chain of the fifth kind, contradiction. Thus u and v must be
on different components of the interior of 2. (See Fig. 16(b).)

Assume now that (ii) is false. First we claim that every component of the
interior of 3 which contains more than one region, in fact contains exactly two
regions. It is clear that either u or v must belong to an extremal region of some
component of the interior of 3, for otherwise X contains an exceptional reducing
chain of the second kind (see Fig. 14(a)). We may assume that u and v belong to
adjacent components C, and G, of the interior of 3. (The arguments of the
proof of Case 2 in the proof of Lemma 3 apply here.) Let D; and D;., be the
extremal regions of C; and C., respectively such that 4D; N aD;,, # < and
assume that u €D, If v&Z dD,,, and F is the neighbour of D,,, then v
necessarily belongs to F (see Fig. 14(b)) for otherwise the submap containing
D.., and F constitutes a reducing chain of the fourth kind. Since the two
endpoints of the common edge of a region of $ with 43 cannot be on the same
component of %, this implies that every component C; of S contains at most
three regions for otherwise we would have a reducing chain of the fifth kind. But
if C; contains 3 regions then G constitutes a reducing chain of the sixth kind.
Thus every component of the interior of 3 contains at most two regions.

Let us label the components of 3 as follows:

Let v = 8S N 83.. Then the component which contains O(x ) and is to the right
of ¢(w ) has subscript 1, the component following it has subscript 2, and so on.

Let now C,, ..., C, be all the components of the interior of % which contain
two regions. Assume that the components are labelled in such a way that if j; < i,
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then G, is to the left of C,. Denote by E; and F; the regions of C, such that E; is
to the left of F, (see Fig. 17(a)).

Let us consider C,. It consists of E, and F;. It follows easily from the W(4)
condition and the assumptions ¥, and ¥, that C, has exactly 2 neighbours in S.
Consequently either E,; or F,; has exactly one neighbour in S. In the first case the
subchain of = beginning with C, and ending with E, is an exceptional reducing
chain. (See Fig. 17(b).) In the second case let k be the highest index such that F,
has exactly one neighbour in S. If k =t then the tail subchain of 3 beginning
with F, is an exceptional reducing chain. (See Fig. 17(c).) On the other hand, if
k <t then the subchain of 3, beginning with F, and ending with E, ., is again an
exceptional reducing chain. (See Fig. 17 (d).) This contradiction proves that (ii)
holds. Due to (ii), if (iii) is false then 3 has a region D with iy(D)=1,
contradicting our assumption. Thus (iii) holds. But then 3 is an exceptional
reducing chain, violating ¥, or ¥,. Consequently M’ contains at most one
region. However in this case the lemma is immediate. This completes the proof
of Lemma 4.

Proor oF THEOREM 1. If M has only one region the statement is vacuous. So
assume M has more than one region and prove the theorem by induction on
V(M). Thus assume ¥; and ¥,. Then by Lemma 4 either M has a reducing
chain, in which case ¥, is violated, or M has a region E with iy, (E) = 1, in which
case X, is violated. This completes the proof of the theorem.

Now let us eliminate the case when a boundary region E with iy, (E) = 1 exists.
This we shall do through the next Lemma.

LEMMA 5. Let M be a simply connected map with a connected interior.
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Assume that M satisfies the condition W(4). Let M' be the submap of M obtained
by deleting all the regions E with iw(E)=1 from M. If ¥, holds then

(a) M’ is connected and

(b) M’ has no boundary regions F with iy(F)=1.

Proor. Follows easily from the fact that all the regions F deleted from M
satisfy in(F)=1.

(b) Let F be a boundary region of M’ with iy(F) = 1. If iy,(F) = k then F has
k — 1 neighbours E; with iy (E;)=1 which are not in M'. If dE; N M has an
endpoint with valency 3 then {E;} is a reducing chain of the first kind,
contradicting X>. Thus the endpoints of dE; N 3M have valency at least 4, for all
j=1,...,k —1. On the other hand, since every E; has exactly one neighbour in
M, namely F, and F has only one neighbour in M’, no common vertex of dE; and
dE;,; may have valency greater than 4. (See Fig. 18.)

Therefore, if k —1=2 then {E,, E,} constitutes an exceptional reducing chain
of the first kind, violating X,. Thus k —1=1, i.e., k =2 and iy (F)=2. By the
W(4) condition this implies that aF N M contains an edge. But then dE, N 6M
has an endpoint with valency 3, contradicting ¥, again. Consequently M’ has no
boundary region F with iy(F) =1, as required. This completes the proof of the
Lemma.

Proor OF THEOREM A. If M has only one region, we are done. So assume M
has more than one region. If M has a reducing chain then the theorem follows by
Remark 1. So assume #,(b). Then by Lemma 4 we may assume that M has a
region D with iy (D)= 1. Let M’ be the map obtained by deleting all the regions
D of M with in(D)=1. Then M’ is connected by Lemma 5 and M'# M.
Consequently, by Lemma 3 and Lemma 4, if M' contains more than one region,
which we certainly may assume, then M’ has a reducing chain S. We claim that if
SN aAD#J for some D with iy(D)=1 then dD N JS contains only one
vertex. Indeed, if dD N JE contains an edge for a (hence a unique) region E of S
then dy(E) = du(E)+ 1= 5 by Definition 3 and equality holds only if S is of the
sixth kind in which case E has two vertices at least with valency 3, which
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Fig. 19.

contradicts W(4). If E N oM does not contain an edge then this violates W(4).
Also if du(E)=4 then E has a vertex with valency 3 by Definition 3, again
violating the condition W(4). Consequently 4D N dE cannot contain an edge,
unless dE has an edge on dM. But in this case dD has a vertex with valency 3,
contradicting X,. Thus S is a boundary chain of M, but not necessarily a
reducing chain, because the valency of the two extremal points may increase. See
Fig. 19. Let M" be the map obtained by deleting S from M'. Then

(*) M" is obtained from M by deleting at most
B(M) boundary regions from M.

On the other hand, certainly S(M") = B(M), while B(M") < B(M') by Theorem
1. Thus

(¥+) B(M")< B(M).
Now (*) and (*+) imply the theorem by Remark 1.
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